
  

 

Abstract— Thermography, with high-resolution cameras, is 

being re-investigated as a possible breast cancer screening 

imaging modality, as it does not have the harmful radiation 

effects of mammography. This paper focuses on automatic 

extraction of medically interpretable non-vascular thermal 

features. We design these features to differentiate malignancy 

from different non-malignancy conditions, including hormone 

sensitive tissues and certain benign conditions, which have an 

increased thermal response. These features increase the 

specificity for breast cancer screening, which had been a long 

known problem in thermographic screening, while retaining 

high sensitivity. These features are also agnostic to different 

cameras and resolutions (up to an extent). On a dataset of 

around 78 subjects with cancer and 187 subjects without 

cancer, that have some benign diseases and conditions with 

thermal responses, we are able to get around 99% specificity 

while having 100% sensitivity. This indicates a potential break-

through in thermographic screening for breast cancer. This 

shows promise for undertaking a comparison to mammography 

with larger numbers of subjects with more data variations. 

I. INTRODUCTION 

As breast cancer is the most common cancer among 

women around the world [1], and early detection helps in 

better treatment, screening for breast cancer is useful. While 

mammography has been typically used for screening, it has 

disadvantages of low sensitivity for dense tissues and 

younger women, risk of causing breast cancer through the 

harmful radiation, and painful examination due to pressure 

involved in breast compression. Thermography is being re-

considered as an alternative for breast cancer screening due 

to the advent of high resolution thermal cameras [2,3] and 

does not have these disadvantages as infra-red radiation 

emitted by the human body is used for screening and there is 

no contact. Breast cancer tumors are at a higher temperature 

due to increased metabolism [4] and hence can be detected 

by thermography. 

Borchartt et al [5] provide a good survey of different 

algorithms in the literature [5] that detect breast cancer using 

thermography. These are mostly naïve approaches, using 

temperature features based on mean, standard deviation and 

other moments, or textural features based on Haralick 

descriptors including energy, entropy, contrast [6] or 

histogram based features for asymmetry analysis [7,8]. 

These features are classified using standard classification 
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algorithms such as Support Vector Machines, Neural 

Networks, etc. In [9], a Fractal Dimension (FD) based 

approach is used for classification of benign and malignancy 

based on the experimental evidence that malignant tumor 

boundaries are more irregular than benign tumors. They 

tested on a very small dataset of about three benign and three 

malignant samples, which is insufficient, and these results 

may not hold for larger datasets. 

There are hardly any algorithms for cancer classification 

that are based on features that are medically interpretable 

[10]. While there are visual features used by thermographers 

[2-4, 11-12] that are clinically relevant, using abnormal focal 

increase in temperature and thermal patterns of the 

contralateral breasts, there is not much work on automatic 

extraction of such medical features. Classification using a 

comprehensive set of medically relevant thermographic 

features would also present biologically relevant information 

to the doctor for additional analysis. Additional analysis 

could involve other tests including a biopsy at the location of 

suspected malignancy, or treatment approaches for at-risk 

patients. One of the problems in thermography is low 

specificity at one sitting. Generally, benign conditions are 

determined by observing changes in thermal patterns after a 

few months in additional examinations.  
In this paper, we propose novel approaches to extract 

features that have a medical significance and are easily 
interpretable by clinician, as well as improve specificity. We 
use a standard classifier ensemble on these features for 
classification. A detailed description of our dataset is 
provided in Section II. Section III and IV describes our 
proposed approach for feature extraction and classification, 
followed by Section V that gives the results of our proposed 
approach with comparison to existing algorithms. 

II. DATASET DESCRIPTION 

It is difficult to obtain large datasets in thermography for 

research purposes due to prior disadvantages of 

thermography of low specificity. Recent research has been 

conducted in datasets of an order of 100 subjects or less 

typically. We obtained an anonymized dataset of 265 

subjects in India through our collaboration with a hospital at 

Manipal University and a clinic, which is a unit of Central 

Diagnostic Research Foundation. The Ethical Review 

Committee of both institutions approved all experimental 

procedures involving these subjects, and subject consent is 

taken to collect their data. The clinic uses thermography and 

sono-mammography for diagnosis. In the clinic, the subject 

is made to wait in an air-conditioned room for 15 minutes to 

suppress any external heat. Thermal images/videos of seated 
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subjects, with their hands raised upwards, were captured. 

From the clinic, a set of five thermal images comprising of 

frontal, left & right lateral and oblique views were captured 

using the Meditherm IRIS2000 camera with a resolution of 

320 x 240 pixels, for 200 subjects.  From the hospital, we 

captured thermal videos of 65 subjects with biopsy 

confirmed breast cancer, out of which, the initial 20 subjects 

were captured using FLIR E60 camera with resolution of 

320 x 240 pixels and the remaining were captured using 

FLIR T650SC with resolution of 640 x 480 pixels. Among 

these subjects, 11 subjects have tumor size less than 2cm 

(T1), 41 subjects have tumor size from 2-5cm (T2), 9 

subjects have tumor size greater than 5cm (T3) and 4 

subjects have tumor touching skin or chest wall (T4) [13]. 

Fifteen subjects had deep tumors. We manually extracted 

frames corresponding to the five views from these thermal 

videos, to bring in uniformity of images from both datasets. 

The ground truth labels for the clinic dataset is the 

doctor’s conclusion based on sono-mammography and 

thermography reports along with confirmation from biopsy 

reports of suspicious cases for cancer, whereas the ground 

truth for the hospital dataset is based on mammography, 

sono-mammography, biopsy and surgery reports, where 

available. The entire dataset from the hospital and the clinic 

is in the age group of 19 to 82 years old and consists of 120 

normal subjects, 53 subjects with benign conditions, 8 non-

malignant cases with hormone sensitive tissues, 6 lactating 

mothers and 78 subjects with malignancy. Fig. 1 shows 

sample images of a normal subject, and subjects with a 

benign tumor, hormone sensitive tissues without 

malignancy, lactating conditions, and a malignant tumor. 

III. PROPOSED FEATURE EXTRACTION ALGORITHM 

Most of the approaches proposed in the literature [3-6, 8] 
extract features from the entire region of interest (ROI). 
Instead of extracting features from the entire ROI, our 
proposed approach extracts features from the abnormal 
regions detected within the ROI.  An abnormal region is a 
subset of the ROI that shows a significant increase in 
temperature as compared to the neighboring areas [13]. These 
abnormal regions are further divided into hot spots and warm 
spots based on the degree of their thermal response. 

A.  Detection of Hot-spots and Warm-spots 

Hot spots correspond to high temperature regions 
segmented using a combination of temperature-based features 
proposed in [13]. These temperature thresholds for 
segmentation, T1 and T2, are defined by Eq. (1) and (2) 
below.  

                             T1Tmax - 

                                     T2Tmax

where  refers to the mean of the modes of the ROI 
temperature histograms in all views, Tmax represents the 

overall maximum temperature in all views,  represents the 

fraction of increase of T1 over , and  represents the 
reduction in temperature of T2 from Tmax. Warm spots 
correspond to slightly lower temperature regions as compared 
to hot spots, and have different parameters. This further 
division of warm-spots plays a part in detection of deep 

tumors as well as in intra-class classification of non-
malignant categories such as benign conditions, hormone 
sensitive tissues and extraneous heat. We select the 

parameters,  and , to improve classification, using a cross-
validation set, as described below. 

Selection of Parameters using a classification algorithm: 
As the extracted hot spots/warm spots play a major role in the 
sensitivity and specificity of the classification algorithm, we 

choose the parameters,  and , that maximize the linear 
combination of sensitivity and specificity as in Eq. (3). 

 J = Sensitivity  Specificity             (3)

B. Feature Extraction 

   We detect hot spots and warm spots in each view and 
ROI, and extract features from them, as defined here and 
summarized in Table I. We define the best view as the view 
in which the size of the detected abnormal region, normalized 
with respect to the ROI, is maximum.  From the detected hot 
spots in multiple views, we use the hot spots from the best 
view only to extract the hot-spot features. However, we use 
the warm spots from the best view and its contralateral-side 
view, to extract the warm spot features, due to which the 
warm spot features are more. This helps in determining the 
conditions that affect low heat rise in both sides.  

1) Presence of Abnormal Regions: As a measure of 

thermal abnormality, we include the number of hotspots in 

the best view, the number of warm spots in the best view & 

contralateral-side view, and their area, normalized with 

respect to the ROI, in our feature set. 

2) Relative Temperature: It is experimentally observed 

using contact temperature measurements [4] that the 

malignant tumor is hotter than its surrounding tissues. 

Gautherie [4] stated that the high metabolic activity of the 

cancerous cells leads to its increase in temperature. We 

calculate the mean temperature difference between the 

detected hot spot/warm spot and the remaining ROI and use 

this as a feature. 

3) Thermal Comparison of Contralateral Breasts: In case 

of malignant tumors, certain benign tumors, inflammation or 

wound-healing cases, an increase in temperature in the 

abnormal regions is observed [2-3, 11-12, 14]. This leads to 

an asymmetry in thermal patterns compared to the 

contralateral breasts. However, similarity in thermal patterns 

is seen in both breasts for normal, hormone sensitive tissues 

and lactating conditions [2], due to the presence of similar 

hormone sensitive tissues in both breasts. We capture this 

property in our approach by using the following features. 

a) Mirror Overlap Area: This feature shows how 

symmetrical is the temperature distribution on contralateral 

breasts. We create binary images corresponding to the 

abnormal regions, on the best view and its contralateral-side 

view. We compute the area of mirror overlap by finding the 

maximum of the convolution between the binary images of 

the two sides, and normalize it using the area of the ROIs. 

b) Area Difference: We use this in conjunction with the 

above feature. It is computed as the normalized difference in 

the abnormal region areas between each view and its 

contralateral view, found for the three views separately. 
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c) Thermal Distribution Ratio: Though there is a 

similarity in thermal patterns for hormone sensitive tissues, 

we observed that it might not be an exact mirror symmetry. 

Hence, the relative areas of abnormal regions in both breasts 

is used as an additional feature. It is defined as the ratio of the 

hot spot/warm spot area in the contralateral-side view to the 

hot spot/warm spot area in the best view. 

4) Boundary: Malignant tumor cells are aggressive in 

nature, due to which they invade surrounding tissues by 

rupturing through the boundary formed by basal laminas 

[15-16]. This makes the malignant tumor boundary irregular 

as compared to non-malignant cases like benign tumors 

whose cells behave similar to normal cells [15]. In [9], 

EtehadTayakol et al explored this behavior using fractal 

dimensions. In our approach, we analyzed this nature using 

the deviation of the boundary from regular shapes, as 

explained below. 

a) Deviation from Circle and Ellipse: This shape-based 

feature uses the deviation of the detected hot spot/warm spot 

boundary from their best-fit circle and ellipse. We use 

convex optimization [17] to minimize the squared algebraic 

distance between the boundary of the detected hot 

spot/warm spot and its best-fit circle and ellipse function.  

b) Irregularity: This feature is a slight modification to 

the above mentioned circle-deviation feature, and uses a 

circle that has a radius equal to the maximum distance from 

the centroid of the detected abnormal region to its boundary, 

as proposed in [18]. We calculate this feature using Eq. (4). 

 

where R represents a detected abnormal region, N(R) 

represents the area of R, (xi, yi) and (x̄ , ȳ ) represent the i
th

 

point on R and the centroid of R, respectively. 

c) Fractal Dimensionality: In [9, 19], fractal dimension 

of all hotter regions, extracted using Fuzzy C-means, is used 

as a measure for irregular boundaries. In our approach, we 

compute the fractal dimension of each abnormal region 

extracted as mentioned in Section IIIA, and we use the 

maximum fractal dimension among these as our feature. 

IV. CLASSIFICATION 

In our work, we tested our data set with standard 

classifiers such as Support Vector Machines (SVM), and 

Random Forests (RF), an ensemble of decision tree 

classifiers. The RF randomly picks subsets of the training 

subjects and feature subsets into groups, and within each 

group, a decision tree is trained.  For a test subject, the mode 

of the decisions of these randomly generated trees is used for 

classification. We found that the RF performs better 

compared to SVM on our dataset, probably because our 

features are better suited to decision trees, and ensemble 

fusion is better than single classifiers. 

V. EXPERIMENTATION 

We manually cropped the thermal images obtained from 

the clinic and hospital to remove unwanted regions like the 

infra-mammary folds, axilla, sternum and other non-breast 

regions. We randomly selected 90 subjects from the entire 

dataset for training, with 27 normal, 25 benign, 3 with 

hormone sensitive tissues, 2 lactating and 33 malignant 

cases. The remaining dataset was divided into cross-

validation and test sets with a size ratio of 1:2, respectively. 

A RF with 100 trees or SVM was trained using this training 

set for 2-class classification. We use the cross-validation set 

to find the optimal values for the parameters (  of hot 

spots and warm spots that maximize J, as mentioned in 

Section III using a step size of (0.1, 0.2C). Since sensitivity 

is more important for cancer screening, we choose  to be 

0.5. To find µ, a histogram bin width of 0.5C is chosen for 

uniformity, as the clinic data had this temperature 

sensitivity. As there is randomness in the RF ensembles, we 

used the maximum of average J in 20 iterations of RFs to 

find the optimal values of ( which are (0.5, 1.4C) and 

(-0.1, 2.6C) for hot spots and warm spots, respectively.  

Table II shows the sensitivity/specificity of our features 

on the test set using RFs and SVMs. We are able to detect all 

the deep malignant tumors using this approach unlike in 

[13], and improve specificity over approaches using just hot 

spot detection [20] by correctly determining the non-

TABLE II: TEST SET RESULTS USING DIFFERENT CLASSIFIERS 

 

 
Sensitivity 

(%) 

Specificity 

(%) 

Our approach - Random Forests 100 98.9 

Our approach - SVM 90 94.3 

Textural Features from [6] 57.5 73.0 

 

TABLE I:  PROPOSED FEATURES 

 

Properties Features Extracted Hot spot features count Warm spot features count 

 
Boundary Features 

 

 
Thermal Comparison of 

Contralateral Breasts 

 
Relative Temperature 

 

Presence of Abnormal Regions 
 

 
Deviation from Circle and Ellipse, Irregularity and 

Fractal Dimensionality. 

 
Mirror Overlap, Thermal Distribution Ratio and 

Area Difference. 

 
Relative Temperature to surrounding tissues 

 

Number and Size 

 
4 

 

 
5 

 

 
1 

 

2 
 

 
8 

 

 
5 

 

 
                     2 

 

4 
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malignant categories that have a thermal response. We 

implemented the textural feature algorithm given in [6] on 

our dataset and the results on the combined test and cross-

validation sets (as no parameter tuning is required here) are 

given in Table II. The algorithm proposed in [9] using fractal 

dimension resulted in very low sensitivity values on our 

dataset. The obtained sensitivity and specificity using our 

approach is very high compared to other thermographer 

based [2-4, 11-12] and image processing based algorithms 

[5-10, 13, 20] on a dataset greater than 100 subjects.  

VI. CONCLUSIONS AND FUTURE WORK 

The classification of malignancy from non-malignancy is 

a difficult problem in thermography if the temperature 

increases alone (hot spots/ warm spots) are considered, since 

there are non-malignant conditions having temperature 

increases, such as lactating conditions, hormone sensitive 

tissues, and some benign conditions that show temperature 

rises at times. However, by using properties of hot spots and 

warm spots, unlike other algorithms that use the entire ROI, 

this classification can become easier, as shown in our 

approach. Due to the differences in these properties for 

malignancy and non-malignancy, e.g. more irregular 

boundaries in malignancy, and more symmetry in size and 

number of warm-spots for non-malignancy, these features 

are significantly able to provide better classification. 

Classifier ensembles, rather than single classifiers, play a 

lesser role than these features, in improving classification. 

We plan to analyse the role of different features, ensembles 

and type of base classifiers, along with their effect on the 

various sub-categories in a future work, to explain further 

the reasons for the higher specificity and sensitivity. The 

high specificity achieved here enables thermographic 

screening in one sitting, unlike prior thermography 

approaches requiring multiple sittings, which is an important 

advance. We also plan evaluation on larger datasets with 

more data variations.  
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(a)          (b)         (c)          (d)         (e) 

 

Figure 1. Sample Subject Images for (a) Normal case in frontal view, (b) Hormone sensitive tissues showing warm-spots in frontal view, (c) Lactating 
case showing warm-spots in frontal view, (d) Benign case showing warm-spots in right lateral view  and (e) Malignant case showing hot-spots in left 

oblique view. The color-bar shows increasing temperature in 0.5C gradations with white being the highest temperature. 
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